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The method of Vickery for calculating the drag of plane lattice structures normal 
to a turbulent stream is extended to cases of increased solidity. The analysis in- 
corporates an extended version of Taylor’s theory for the flow through a porous 
plate, and a simplified version of Hunt’s analysis of the distortion of a turbulent 
flow by the mean flow field of a body. Some comparisons are made with experi- 
mental data. 

1. Introduction 
The main methods of calculating the unsteady wind loads on a structure in 

turbulent flow make use of quasi-steady theories such as those of Davenport 
(1961) and Vickery (1965), in which the body is assumed to react to the turbulent 
flow as it would to small slow changes in mean flow, with perhaps some appropriate 
alteration of the force coefficients. These theories lead to a~ linear relationship 
between unsteady loading and the relevant free-stream component of fluctuating 
velocity. 

Hunt (1972) pointed to limitations in the use of these theories, particularly 
in cases in which the body size is comparable with the scale of the turbulence, 
as often occurs in practice. The quasi-steady method fails on two counts. First, 
no account is taken of the potential flow field, whose normal velocity component 
cancels the normal velocity component of the incident turbulence over the 
surface of the body. Treatment of this effect has largely been limited to the 
analysis of wings and aerofoils in turbulence. Second, no account is taken of 
the distortion of the turbulence by the interaction of the mean flow field of the 
body with the turbulent vorticity. Lighthill (1956) considered these two effects. 
He listed them in terms of three velocity fields induced by a body placed in a 
rotational stream: (i) a gradient of potential whose normal velocity component 
on the body surface cancels that of the primary flow; (ii) a Biot-Savart velocity 
field resulting from the change in vorticity in the primary flow; (iii) a gradient 
of potential the same as (i), but cancelling (ii) on the surface.. Clearly, if (ii) can 
be calculated and added to the primary flow, (i) and (iii) can be calculated as a 
single potential field. This is the approach of Hunt (1973). 

Hunt (1 973) showed that rapid-distortion theory (Batchelor & Proudman 
1954; Ribner & Tucker 1952) is particularly applicable to the analysis of external 
turbulent flows round bodies. He extended the theory to analyse, as an example, 
the problem of a turbulent cross-flow past a circular cylinder and calculated 
certain asymptotic and other special cases, notably the behaviour of the turbu- 
lence along the stagnation streamline. Some of the main predictions of the theory, 
which was the first full application of rapid-distortion theory to external flows, 
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have been corroborated by the experiments of Bearman (1971) and Petty (1 970, 
private communication). But it was not possible to calculate general results, 
partly because the nonlinear effect of the mean velocity on the turbulence led 
to multiple numerical integrations. 

In  some cases, as in this paper, this difficulty can be avoided when it is possible 
to linearize these terms and still calculate the distortion effect to a reasonable 
degree of accuracy. The porous plate is such a case, because the mean-velocity 
perturbation is everywhere small, so that this linearization is possible. 

The porous plate case is also worth analysing, because of its relevance both 
to Vickery’s (1965) theory and to the problem of a solid plate normal to a turbu- 
lent flow, which has been extensively studied experimentally. Vickery (1965) 
analysed a rectangular plane lattice structure placed normal to the incident 
stream. He assumed that the turbulent velocities were much smaller than the 
mean velocity, and that the lattice was sufficiently tenuous for its back reaction 
on the incident flow to be considered negligible. With these assumptions, the 
theory related the local loading linearly to the undisturbed streamwise component 
of turbulent velocity ‘incident’ on the same point, and hence the drag spectrum 
to a double area integral of these velocity components. Bearman (1969) simplified 
this formula for the drag to one double integral of the appropriate cross-spectrum, 
and Roberts (1971) generalized the analysis to different shapes and spectra. 
Both Vickery and Bearman, in these papers, compared their calculated values 
of aerodynamic admittance of drag predicted by the t.heory with measurements 
made on solid plates normal to a turbulent airstream behind a wind tunnel grid. 
A solid plate is obviously a severe test of the second of Vickery’s assumptions; 
nevertheless, the predicted and observed values were comparable, although 
important discrepancies appeared. The first assumption, limiting the turbulence 
intensity, is the less restrictive, since it is reasonably well satisfied in many 
cases of both the atmosphere and the wind tunnel. I n  the present paper, the 
importance of the second assumption is examined by constructing a higher- 
order approximation to the theory in terms of the porosity of the structure. 

Vickery’s idealized plane lattice is a structure whose separate members are 
of sufficiently small width, compared with any other non-viscous length scale, 
to have negligible individual effect on the flow, but which together effectively 
form B uniform sheet of resistance to the flow. This structure is the same in 
principle as Taylor’s model for a porous plate (1944) and the representations of 
wire gauzes investigated by many authors. 

The main effect of such a structure is to produce a drop in the total pressure 
along any streamline passing through it. Schubauer, Spangenberg & Klebanoff 
(1950) suggested the formula for a gauze 

Ap = +K(6,)pq2. 

Ap is the pressure drop, p the fluid density, K the resistance coefficient of the 
gauze, a function of the local inlet flow angle 8, (see figure l), and q is the local 
flow speed through the gauze. The gauze also refracts the streamlines, and the 
formula for the outlet flow angle 6, = a6, was suggested. (a is the refractive 
index of the gauze, and may depend on 4.) 
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FIGURE 1. Plate and axes. 

Subsequently various formulae were proposed, to ,&scribe the dependence of 
K and a on 8, and the geometry of the gauze. In  the limit of a very porous plate 
or gauze and weak turbulence, they all lead to similar results, which are com- 
patible with Vickery’s analysis. 

Schubauer’s formulae were used by Taylor & Batchelor (1949) to calculate 
the effect of a homogeneous gauze of infinite extent on a turbulent flow passing 
through it normally. Their analysis was linearized, using the relative turbulence 
intensity as the small parameter, and was valid for all values of K and a. This 
was possible because the gauze, being of infinite extent, did not perturb the 
mean flow. In  addition, because of the assumed low intensity of the turbulence, 
K(8,) and a(8,) were approximated by their values at 8, = O:K(O), hereafter 
referred to as K ,  and a(O), hereafter a. But this analysis is not applicable to 
gauzes of finite extent, because of the effects of distortion of the turbulence by 
the mean-velocity field and the more complicated boundary conditions. 

Analyses of mean flows through gauzes and porous plates include the cases 
of oblique and non-homogeneous gauzes (investigated by e.g. Elder 1959; Lau & 
Baines 1968; Turner 1969; Owen & Zienkiewicz 1957) and Taylor’s (1944) 
investigation of the porous plate. Taylor (1944) approaches the problem directly, 
by representing the plate as a source density distribution m for which Ap = p om, 
where the pressure jump across the plate along a normal Ap is also. related to 
the normal velocity component at the plate U by Ap = $KpD2. 

This is the same as the general gauze formula above, with a = 1 everywhere 
(i.e. no refraction), and K(8,) = K cos 8,. The predictions of drag coefficient C, 
given by Taylor were compared with experimental values by Taylor & Davies 
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FIGURE 2. Drag coefficients of porous plates. CD: __ , Taylor; --- , Koo & James. 
Two-dimensional plates : A ,  Castro, Blockley, Valensi, Rebont ; A, this experiment. 
Three-dimensional plates: 0, Taylor & Davies, DeBray; 0,  this experiment. A flag 
indicates CD plotted against K rather than j3. 

(1944) and Blockley (1968). Their results, and those of Valensi & Rebont (1969), 
Castro (1971) and DeBray (1957), are summarized in figure 2. There is a difficulty 
in comparing some of the results with Taylor’s theory, since in many cases the 
plate is designated by its open-area ratio ,8, and the resistance coefficient K has 
not been measured. But, as far as comparison is possible, the Taylor drag 
coefficient C, = K/(  1 + &K)’ 
is in reasonable agreement with most of the experimental values up to a value 
of the porosity at which Castro found that the recirculating ‘bubble’ region in 
the wake had moved forward into the vicinity of the plate. Above this value of 
K (about 4), the theoretical drag coefficient is too low, and both Castro, for 
two-dimensional plates, and DeBray, for square ones, found that a ‘vortex 
shedding’ peak started to appear in the velocity spectrum of the wake. Koo & 
James (1973) proposed a rather better theory, which gives values of drag coeffi- 
cient close to those given by Taylor for K < 4, and a more realistic, monotonic- 
ally increasing, drag coefficient at higher values of K .  However, the Taylor 
theory does have the advantage of leading to simple equations, and for this 
reason a resistance equation based on it has been adopted here. The values of 
mean drag coefficient given by Taylor’s theory for K > 4 are unrealistic, and 
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FIGURE 3. Mean velocity along upstream centre-line. Measured K :  V, 4.5; A, 11 ; ., co; 
0, 11, larger-scale turbulence. Calculated: - , Taylor; - - - , Parkinson I% Jandali 
(C,, = -1.08). 

for that reason the prediction of unsteady drag forces by this method has been 
limited to K < 4. But the mean-velocity field in the neighbourhood of the plate 
is quite well represented by the theory, for all values of K ,  even up to the solid 
plate ( K  = a). Values of centre-line velocity are compared with measured data 
and with values given by the source-wake method of Parkinson & Jandali (1970) 
in figure 3. 

Afurther limitation on the magnitude of K is required by the linearized analysis 
for distortion of the turbulence by the mean-velocity field of the plate. This 
linearization is only reasonable if the mean-velocity perturbation is small over 
most of the region that affects the distorted turbulent velocity field. Since 
Taylor’s theory predicts the mean flow quite accurately far from the plate 
where the perturbation is small for all K ,  the present method should predict 
the distorted turbulent velocity field accurately far from the plate. But the 
turbulence close to the plate, and hence also its unsteady drag, will only be 
predicted accurately for K small enough that the mean-velocity perturbation 
is small there also. 

If the plate is regarded as at gauze, the simplified equations for the pressure 
drop and refraction are equivalent to the more general equations when K is 
small compared with one. But assuming that Taylor’s theory describes the mean 
flow field of the plate reasonably accurately for K < 4, the present analysis, 
being a time-dependent extension of it, linearized with respect to the mean- 
velocity perturbation of order K/(4  + K ) ,  is a good approximation when .K is 
small compared with 4. Therefore, the term ‘small’, when applied to K ,  will be 
used here to mean ‘small compared with 4’. In  fact Taylor’s theory breaks down 
for all K a t  the edges of the plate, where the spanwise velocity is predicted to 
have a weak logarithmic singularity. This is unrepresentative of the real flow, 
but appears to have negligible effect on the calculated turbulence, except very 
close to the edges. 
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Since the resistance equation is based on Taylor’s theory, the structure will 
be referred to hereafter as a porous plate, rather than a lattice or a gauze. Further, 
we shall assume, as have all similar flow analyses, that the effect of Reynolds 
number is small, and is confined to the value of the parameter K ,  so that K may 
be taken as a constant for any particular case of mean flow speed and hole 
geometry, but that in this respect the extent of the plate is immaterial. 

2. Analysis 
2.1. Linearization of the vorticity transport equation 

We suppose that the free stream has mean velocity uw normal to a two-dimen- 
sional porous plate of width 2b, as in figure 1. The mean flow convects from far 
upstream homogeneous, isotropic turbulence, with velocity components ujw in 
the directions xi (1 streamwise, 2 across, 3 spanwise). Ti, = 0, where the overbar 
denotes a time mean and the turbulence is weak, i.e. 

Introducing the porous plate into the flow at x1 = 0 generates disturbance 
velocities Go (mean) + u (fluctuating). iio can be divided into two parts: ii, the 
mean perturbation which would occur in the absence of turbulence and which 
is O(Kow) for small K ,  and ii‘, a component arising from cross-coupling between 
the effects of the plate and the turbulence. Since turbulence can only contribute 
to a mean velocity in the mean-square or higher correlations, ii’ is O(Ke2um). 
It is convenient to take the free-stream speed Uw as the unit of velocity, and 
similarly the density p and the plate semi-width b as unity. Therefore, the ith 
component of the total velocity 

ai = 614 + ui f uim f ui + O(K€2) 

with a corresponding expression for the vorticity. 
Assuming that the streamwise integral length scale L, of the turbulence is 

of the same order as the width of the plate, all spatial derivatives, whether of 
the mean flow or of the turbulence, will be O ( X ) ,  where X is the quantity differen- 
tiated. This assumption excludes the interesting case Ll < 1, but rapid-distortion 
theory cannot be applied to this case with certainty, unless the turbulence is 
very weak (€4 < 1). 

Substituting the expressions for velocity and vorticity into the full vorticity 
transport equation (the curl of the Navier-Stokes equations), and subtracting 
those parts satisfied by the mean flow in the absence of turbulence and by the 
turbulence in the absence of the plate, leaves 

Here ‘5 = V x u ,  rw = V x u ,  and = VxCi = (O,O,[) 

with 
assumed to be large; v is the kinematic viscosity. 

= 0 outside the wake of the plate. R is the Reynolds number cwb/v ,  
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Terms O(K) are small for a sufficiently porous plate, and < and u are O(Ke), 
since the largest terms in (1)  are of that order. The cross-coupling and inertial 
transfer terms lumped in the O(Ke2,K2e) bracket are smaller, and may be 
neglected, as may the viscous terms O(KeR-l), for large Reynolds numbers. 

The equation for the undisturbed turbulence is 

ayrn %rn - + - = O(e2). at ax, 

Neglect of the 0(c2) inertial transfer terms leaves the ‘frozen’ turbulence con- 
vection equation. 

2.2. The distorted turbulent velocity jield 
Expressing the turbulence as a sum of random Fourier components of form 
exp {i(wt - k.  x)}, where w is the frequency and k the wavenumber of the parti- 
cular component, and substituting in the above equation for the undisturbed 
turbulence gives 

= 2, exp {i(wt - k. x)} + O(e2) with w = k,. 

2, is independent of x and t ,  and Fourier transforms are denoted by capital 
letters. 

For the disturbed turbulence, 

< = Z(x) exp {i(wt - k. x)}. 

This gives, on substitution into (I), 

aZ/ax, = ik. iiZ, - U,. Vg + 2,. Vii +c. VU, = ik,;Ei,Z, +?, 

The obvious lower limit for the integrals is - co, so that Z + 0 as xl+ - co. But 
the first integral is divergent in this case for all two-dimensional bodies with 
significant drag, including porous plates. This is because the perturbation 
velocity U1 decays only like r-1 in the far field of a two-dimensional source-like 
body; hence, anything convected by the perturbed stream from infinitely far 
upstream suffers a logarithmically infinite delay compared with its time of 
a.rriva1 in the absence of the body. 

Darwin (1953) showed that a logarithmic singularity occurred in the drift 
(the distance travelled with respect to axes fixed in the undisturbed fluid) of 
material elements along a stagnation streamline. This leads to problems asso- 
ciated with a singularity in the vorticity distibution at a stagnation point, and 
is discussed by Hunt. But in the present case the drift function is logarithmically 
singular on all streamlines, owing to the far-field source-like behaviour of the 
plate. This is associated with the drag of the plate, and occurs for all two- 
dimensional bodies with significant drag. It is quite distinct from the former effect. 
The singularity is the same for all streamlines, and induces the same singuIar 
phase change in all components of the vorticity; but it does not induce any 
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amplitude change, nor does it lead to an infinite hydrodynamic mass for such 
bodies. In  reality the phase change is not singular, since the turbulence does not 
have its origin infinitely far upstream, nor does it perfectly obey Taylor’s hypo- 
thesis, and the body causing the disturbance cannot be truly two-dimensional. 

The significance of the singularity can be seen by considering the equation 
for the convection of a material quantity x in a hypothetical flow 

The equation for x, 
42 = (1  +GI, 0 , O ) .  

contains the first terms of the vorticity transport equation (1). If, as with the 
turbulence, x is considered as a sum of Fourier components so that far up- 
stream where @, = 0, 

x = Xexp{i(wt-k,x,)), 

- say, then generally 
x = Xexp {i ( w t - k , x l + k l / x l  -)). UldXl  

-m 1. +Ti ,  

On expanding the integrand for small GI, a term similar to the divergent integral 
in the expression for Z is obtained. 

So it is apparent that, for < to be small in the region of the plate, it must be 
defined, not as a perturbation of <, related to an upstream time origin, but as a 
perturbation of an appropriately delayed <,(t - At,). Therefore, for a component 
of frequency w ,  

far upstream. 
At, is arbitrary, provided it includes the singular part of the time delay, 

according to where in the neighbourhood of the plate it is evaluated. It is con- 
venient to calculate At,  at the point x’ a t  which the velocity u is required, and 
at the origin for the drag calculations: 

< + <, -f exp { - iwAt,} <, as xl+ - co, 

Since < is now of the same order as Co3 at x1 = -00, the small-perturbation 
equation (1) is not valid up to this limit, and the upstream boundary condition 
must be applied a t  an intermediate limit, We choose this as 2, = - X,/K, with 
X, fixed and positive so that Z,-t - 00 as K-t  0. 

The solution of (1) for 2, satisfying the boundary condition at this limit, 
omitting terms of order (K%) is 

2 = ik, { j y ,  @,&, - At,] Z, +I:, q dx,. 

AS ~ 1 - f  -X,/K, 
< + - exp { - iwAt,} qm -+ [ 1 - i oAt ,  - exp { - iwAt,)] <, 

- t o  as K-tO. 
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So this also satisfies the upstream boundary condition. But the vorticity equation 
does not hold across the plate, so that the solution for 2 downstream in the wake 
of the plate may contain an additional constant of integration Z,(x,), say. 

Therefore, since z = (z,, z,, 0 )  and = ( O , o ,  c), 
where 5 is a function of x2 only to order ( K )  for x1 > 0 and is zero €or xl < 0, the 
components of the vorticity perturbation 2 can be written as 

1 Zl = {I(W +%I Zl, +%Z,, - cXlH(z1) { Z 2 m  + ik3 7?1,> + Z,,(Z,) H(x,), 
z2 = {I(fi) -4 z,, + V , Z , m  - Exx,H(x,) (ik3 q,> + Z,(X,) H(x,), 

aP 
z3 = I ( z )  z3, -G%H(Xl) u 2 m  - cH(x1) ulm - cxlH(xl) {ik3 Gm} + z3w(x2) H(xl). 

and H(xl) = 0 outside and 1 inside the wake of the plate. 
Because (1)  does not hold through the plate, where a jump in the value of the 

vorticity occurs, the vorticity in the wake is as yet only specified to within the 
arbitrary constant of integration Z,(x,) H(x,). This term represents the addi- 
tional vorticity generated by the fluctuating pressure drop across the plate, as 
a result of which the turbulence far downstream even in the idealized wake of 
the plate does not return to its undisturbed state. Boundary conditions at  the 
plate are required to specify 2,. 

Viewed on the scale of the lattice or hole structure of the plate, Z, is the 
change in vorticity that occurs when the structure of the plate interrupts inci- 
dent vortex lines by stretching and dissipation near the surface, and adds to 
the vorticity by shedding from the edges. Viewed on the scale of the plate, the 
change in vorticity is associated with the blocking action of the plate and its 
resistance to the flow through it. The other discontinuous terms in the expression 
for 2 result from interactions between the fluctuating flow and the mean wake 
vorticity. Therefore, the total unsteady vorticity field can be divided into three 
parts: (i) <,, the undisturbed incident vorticity; (ii) <,, consisting of the dis- 
continuous terms in (2) which contain the factor H(xl) and are zero outside the 
wake; (iii) <’ = < - <,, the remainder, continuous across the plane of the plate. 

It is the fluctuating velocity, rather than the vorticity near the plate, that is 
of interest. The velocity field, expressed in terms of components corresponding 
to (i)-(iii), is 

u,+u’+w+V$ where Vxu,=<,,  Vxu‘=<’  and Vxw=<, .  
$ is an arbitrary potential, determined by boundary conditions and satisfying 
V2$ = 0. The rotational wake velocity w can be defined to be zero outside the 
wake without loss of generality, by including any irrotational velocity field 
associated with <, in V$. The vortex lines of <’ are continuous everywhere; 
therefore, since V . u’ = 0, u’ can be calculated from the Biot-Savart integral 

<’x (x-XI)  

47rIx-x‘13 
dxl dx, dx3. (3) 
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2.3. The boundary conditions at the plate 
Application of the momentum equation to both sides of the plate gives the 
equation for the pressure difference Ap across the plate 

V(AP) = %? x (% + q,) - A{a%?/at + &v%2] + o(R-~) ,  (4) 

in which %, the total instantaneous velocity, is continuous across the plate in 
order to satisfy continuity of flow and the assumption of no refraction. A is the 
normal jump across xl = 0: (side (2) > 0 - side (1) < O}. The pressure jump is also 
related to the velocity a t  the plate by the resistance equation 

Ap = + K a 2 .  (5) 

Eliminating Ap between (4) and (5) gives an equation which specifies the 
jump in Cw at the plate, and hence 2, in (2). Integrating this in the x, direction 
from - co, with <, expressed as V x w, gives to O(Ke), for the fluctuating part, 

In  ( 6 )  values for El are substituted from Taylor’s solution for the mean flow, and 

- - -+-- 
Dt = at 4+K ax,‘ 

The latter is the convective derivative corresponding to the mean velocity 
through the plate. q5$ is the fluctuating part of the potential on side i of the plate. 
From above, 

u1 = 8g5i/axl + the Biot-Savart perturbation component + w1 (in the wake). 

~a 4 a  

On the upstream side, 

say, where u; is the total fluctuating normal velocity component ‘felt’ by the 
plate. A second boundary-value equation is required to fix q51 and q&. Continuity 
of the fluctuating part of % a t  the plate gives 

u, = u‘; + aq5,/ax1 - Ulo0 

Vq51 = V42+Wlq=0,1rzl<l* 
But Vw = 0 and V2q5$ = 0 by continuity; therefore, 

The potential q5 is O(Ks). Since <, satisfies D<,/Dt = 0 to O(Ke), Dw/Dt on the 
right-hand sides of ( 6 )  and (7)  is O(K2e) at most, and may be neglected in cal- 
culating q5 to O(Ke) .  However, the resulting equations still contain some higher- 
order (K2e) terms, which have been retained, to preserve compatibility with 
similar higher-order terms in Taylor’s theory. It is these terms that enable the 
theory to give reasonable predictions of the mean drag coefficient up to K = 4, 
and of the mean velocity field for all K .  Without them the theory is only appli- 
cable for K 4. But the Dw/Dt terms on the right-hand sides of (6) and (7 )  
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greatly increase the difficulty of obtaining a solution, and do not relate to 
Taylor’s mean flow theory. In  Graham (1972, appendix B) they were shown to 
be of order (kKeZ2). They are e.g. very small in both the cases of very large scale 
and very small scale turbulence. ;I12 is much less than El over most of the plate, 
and terms of this order (Z2) are neglected in Taylor’s theory, being also of the 
order of the difference between the various different formulae proposed for 
pressure drop and refraction equations across gauzes and porous plates. They 
will therefore be assumed to be small enough to be neglected in the present 
analysis. 

The two equations (6) and (7) for di only apply within the area of the plate 
[x2f < 1. Outside the plate, (#1- d2) and all its higher derivatives with respect 
to x1 are zero on x1 = 0, in order to satisfy continuity of velocity and pressure. 

Combining these with (6) and (7), and writing j5’ = 4/(4 + K ) ,  the potential 
flow problem for 9, and d2 becomes 

V2q5, = v24, = 0, (8) 

If the flow is steady (k, = 0 ) ,  these equations reduce to 

which is identical with Taylor’s steady flow equation. In  this case, Vickery’s 
quasi-steady formula applies for the drag, provided the calculation is based on 
the incident velocity u‘;, which includes the effect of distortion by the mean 
flow. Also, for every small K ,  the loading on the plate a t  all frequencies is 
Ap = Ku, + O(K2),  which,neglecting the O(K2) terms, is the relationshipassumed 
by Vickery. 

2.4. Calcuhtion of unsteady drag and velocity spectra 
Equations (8)-( 10) were solved by a Fourier transform method described in 
appendix A. The drag was obtained in the form 

D = V;P,(k) exp [i(wt - k3x3)] 

with a similar solution for the upstream velocity component 8$l/axl. I n  appendix 
B, the distorted turbulent velocity field u; is expressed in the form 

We are therefore in a position to calculate details of the velocity and pressure 
field in the vicinity of the plate, provided an adequate description of the up- 
stream turbulence can be obtained. The simplest and perhaps the most impor- 
tant quantity both to measure and calculate is the overall unsteady drag of the 
plate. 
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The expression F(h)  contains terms in exp ( - i k2x2)  and exp [ - i (k ,  & A)%,]; 
therefore (11) has the form of a scattering relation for ‘breadth-wise’, (2-) 
wavenumber, components. That is, when a component of wavenumber k, is 
incident on the plate, the effect of the plate’s mean velocity field is to scatter 
this into a continuous spectrum of (2-) wavenumbers which constitute the Biot- 
Savart distortion field. The potential flow solution for the unsteady drag is of 
the form 

D = U~lzl=,Po(k) exp [i(ot - k3x3)] (12) 

for each incident streamwise velocity component vl; exp [i(wt - k. x)] ‘felt’ by 
the plate. There is no dependence on transverse components. The general form 
of F(h) on x1 = 0 is 

fl(h)exp(-ik,x,)+f2(h)exp[i(k,-h)x,] +f,(h)expr-i(k2+h)x21. 

The drag response to each (2-) wavenumber component can be evaluated 
separately and the result integrated over A. Therefore, the fluctuating drag 
induced on the plate by a free-stream component of turbulence 

U,exp[i(wt- k-x)], 

including the effects of distortion, is 

+&(A) Po(k,, k,  - A, k3) +&(A) Po(kl, k, + A, k, ) )  dh]] 

+ similar terms involving U,, and U3,. (13) 

For simplicity, let 
D = X, U,, exp [i(wt - k3x3)]. 

Equation (14) is an expression relating the random variables D, the sectional drag, 
and Uj,, the velocity wavenumber components. This relationship can be used, 
e.g., to express the measurable quantity SDD(w,s), the frequency spectrum of 
drag on a rectangular element of the plate of spanwise length 28, in terms of 
the triple wavenumber spectrum tensor Si,(k) of the turbulence. 

Following the analysis of Roberts (1971) and others, 

denotes the complex conjugate. If further we assume that the undistorted 
turbulence is isotropic, 

say. Therefore, 

SDD(W) = 64s’ /omjo” Sll(k)pdj(XiX~) sin2 k38/(k38)2dk2dk3. ( 16) 
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A convenient way of describing the overall unsteady forces induced on a 
body in a particular turbulent flow is by making use of the concept of an aero- 
dynamic admittance function for that force. Using Davenport’s (1961) definition, 

A(@)  = ~ , , (O) / ( l6S2Q~~1*(@)} .  (17) 

The mean drag coefficient C, = K / (  1 + $K)2 in this case. Therefore, substituting 
from (16) with isotropic turbulence, 

Similarly, i t  is possible to calculate the spectrum of the distorted turbulence 
field in the neighbourhood of the plate. For example, along the upstream centre- 
line, the distorted streamwise velocity spectrum, including the potential or 
blockage part of the velocity field, is 

where Y ,  = cYlj exp ( - iklzl)  + - -Fj(h, xl) dh + a+Jax,[ E2=,,. 4Y.K 1: 2; 
Three-dimensional plates can be analysed by an extension of the above analysis. 

3. Experimental measurements 
3.1. Description of the turbulence 

It is generally assumed, with some experimental justification (e.g. Roberts 
1971), that grid turbulence at order ten mesh lengths downstream of the grid is 
both reasonably isotropic in its length scales, and quite well described by the 
von Kkrn&n spectrum a t  all but the very highest and perhaps lowest frequencies. 
This spectrum, or part of it, is also found to describe certain atmospheric condi- 
tions adequately. However, i t  must be emphasized that in none of the theories 
for turbulent loading is it necessary to assume the von Kkmbn spectrum. All 
that is required is an adequate description of the undisturbed turbulence in the 
particular situation being modelled. The longitudinal von Kkm&n spectrum at 
frequenoy n (Hz) is 

Harris (.L970) deduced from this an expression for the triple wavenumber 
spectrum for an isotropic turbulence, which can be expressed as 

where 
37 
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This spectrum is not in itself a measurable quantity, but an integrated Fourier 
transform of it, the coherence function 

where y' = y(c2 + k?)* is measurable. 
Bearman (1969) showed how Vickery's admittance formula can be expressed 

as a double integral involving this coherence function. Therefore, measurements 
of it are clearly a useful test of the adequacy of the description of the turbulence. 
Harris (1970) and Roberts (1971) compared the function with grid turbulence 
data. 

The present experiments were carried out using various biplanar grids to 
generate the turbulence, which was assumed to be well approximated over the 
energetic regions by the above formulae. Figure 7 compares the empirical with 
a measured, one-dimensional longitudinal spectrum. The appropriate length 
scales were calculated from the zero-frequency intercepts of the spectra. 

3.2. Measurements of the drag-admittance of porous plates 
A series of wind-tunnel experiments was conducted, to measure the effect of the 
resistance K on the admittance of various two-dimensional and square plates 
downstream of a turbulence grid. The plates were of two types: (i) a wire gauze 
stretched over a skeleton framework, giving a drag coefficient of 0.62; (ii) various 
thin plastic plates drilled with a square pattern of round holes, three holes across 
the width of the plate, giving drag coefficients from 0.54 to 1.20. The plates 
were mounted on stings connecting them with a piezo-electric drag balance. 
Figure 4 shows a typical spectrum of drag. The prominent peak is the mechanical 
resonance of the system. Graham (1 972) describes the experimental arrangements 
more fully. 

The plates were positioned ten and fourteen mesh lengths downstream of the 
grid used. The experimental details are listed in table 1. In  the cases of two- 
dimensional plates, it was necessary to have two small gaps separating the square 
sensing element from the rest of the plate. This permitted a small extra through- 
flow, which increased the effective porosity of the plate. An estimated porosity 
correction was made to take this into account, by adding half the open area of 
the gaps to the open area of the element. But, for the same reason, no two- 
dimensional solid plate measurements were made, since it was felt that the gaps 
would have a considerable effect on the near-wake region. 

The blockage-area ratio was less than 4% for all the plates and, since in 
defining admittance a ratio of fluctuating to mean drag is used, no blockage 
corrections were applied. 

The resistance coefficients of the gauze structure, and the various plate/hole 
geometries were measured by placing samples completely across a duct. Some 
underestimate of K is probable, using this method, because of boundary-Iayer 
effects. 
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10 

R, x 10-4 
Gauze 

1 
2 

Round holes 
3 
4 
5 
6 
7 
8 
9 

10 

11 
Solid 

0.58 
0-58o 

152 
152 

1.3 
1.3 

5 
5 

0.62 
0*62+ 
0.48 
0*48+ 
0.34 
0.34* 
0.23 
0.23 o 

1.2 
1.2 
4.5 
4.5 

11.0 
11.0 
22.5 
22.5 

32 
32 
32 
32 
32 
32 
32 
32 

0.57 
0.57 
0.57 
0.57 
0-57 
0.57 
0.55 
0.55 

14 
14 
14 
14 
14 
14 
14 
14 

0 32 0.57 14 2 co 
TABLE 1. Experimental details. Open-area ratio /?; resistance coefficient R; and K 
uncorrected for gap effect; o, two-dimensional configuration. Mesh size of turbulence grid 
M (mm) ; distance of plate downstream of grid X ;  nominal Reynolds number based on the 
plate semi-width b. 

37-2 
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The mean drag coefficients of the plates were all measured in a turbulent 
incident flow. They are plotted against open-area ratio ,I3 and resistance coeffi- 
cient K in figure 2. The main conclusion from comparing these results with 
those of other experiments is that square isolated plates have a consistentb 
lower drag coefficient than two-dimensional plates of the same porosity, 
although the difference is very small at high porosities. The comparison with 
Taylor’s theory indicates that it gives a reasonable estimate of the drag up to 
values of K in the region of 4. There is little conclusive evidence of the effect of 
turbulence on the drag coefficients, except perhaps a t  zero porosity. 

3.3. Measurement of velocity spectra on the centre-line 
Some measurements of the distorted turbulent velocity field ahead of the 
plates were also taken. The intensity and spectra of the streamwise component 
were measured with a hot-wire probe on the centre-line (x2 = 0). The probe was 
aligned with the flow, and traversed through a hole in the centre of the plate. 
This hole was made larger than the other holes in the porous plate, to compensate 
for the blockage of the probe stem. 

Measurements were made between 0-125 and 2.5 plate diameters upstream. 
Those closest to the plate were at a distance from the plate similar to the hole 
size, and showed some effect of the non-homogeneity of the porosity on the mean 
velocity (figure 3). Elsewhere there was good agreement with Taylor’s theory. 

The turbulence was also measured in the absence of the plate (referred to as 
K = 0 ) ,  and, in the case of the smallest scale, showed an appreciable decay over 
the streamwise range of the measurements. By measuring the distortion relative 
to the undistorted turbulence at the same streamwise station reasonable agree- 
ment was obtained between theory and experiment. This suggests that rapid- 
distortion theory may be applied to fairly small length scales, provided decay is 
taken into account in this way, as Tucker & Reynolds (1968) found for homo- 
geneous strain fields. 

The theoretical predictions were much less sensitive to the small changes in 
length scale of the convected turbulence over the measurement range, and all 
calculations were therefore based on a nominal value of length scale for each grid. 

4. Discussion of the numerical results and comparison with experiment 
4.1. Drag spectra (admittance) 

Figure 5 shows the calculated and measured values of admittance for the element 
of a two-dimensional gauze plate. The corresponding three-dimensional (square 
plate) case is shown in the same figure. At these low values of K and LF1, there 
is not much difference between the K = 0 (Vickery) theory and the results of 
the present theory for the square porous plate and the square element in a two- 
dimensional plate. 

I n  order to try to obtain a more decisive measurement of the effect of K on 
the admittance, the more extensive series of tests using drilled plastic plates 
was carried out. I n  this case the grid used was also sufficiently small to give a 
value of L, lower than in the previous experiment. The results are plotted in 
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Gauze, L, = 1.25, K = 1.0: *, two-dimensional; @, square. Solid, K = 00, square: 
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figure 5 ,  and the comparison with results computed from the theory shows the 
same trend of increasing admittance with increasing K and a reasonable measure 
of agreement in the absolute values of the admittances. 

The theory clearly breaks down as K+oo (e.g. the mean drag coefficient +O 
and the admittance, for Ic, $. 0,  -too), and is probably reasonable only for K < 4. 
Theoretical admittances are also plotted in figure 6 for two-dimensional plates 
of fixed K ( = 4), but with varying length scales .L, of the turbulence. The main 
effect of the distortion correction at low frequencies is to raise all the admittances 
differentially, with the biggest effect for the smallest L,, bringing them closer 
together. 

4.2. Centre-line velocity spectra and intensities 
Figure 7 shows calculated and measured spectra a t  one quarter of a plate dia- 
meter ahead of the plate, close to the point of maximum streamwise intensity 
for the smaller length scale. Nearer the plate, the intensity of this component is 
reduced by the dominant blocking action of the plate. Asymptotic spectra 
(see Q 4.3, (iv)), for zero length scale turbulence that undergoes no blocking ahead 
of the plate, are also plotted in the figure. Comparison of the spectra indicates 
that blocking is significant only a t  the low frequency end of the spectrum, 
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10 

FIUURE 6. Calculated admittances of two-dimensional plates in turbulence of different 
length scales. Values of L, on the curves: -, K = 4; -- -, 0. -.-.-, asymptotes 
for high frequencies. 

n < no, where no is very approximately independent of the length scale of the 
turbulence for the cases shown. The reduced effect of blocking at high frequencies 
has also been demonstrated in other experiments (e.g. Bearman 1971), and is 
associated with the rapid fall-off in the potential flow field at high frequency. 

For sufficiently high frequency, the linearized theory (see 3 4.3) predicts that 
the effects of distortion become independent of the length scale of the turbulence, 
and the distorted spectrum tends to a constant multiple of the undistorted spec- 
trum: 

&1(n)+{1 +A (1 -@JI&(n). 
= 1 + Til is the total mean streamwise velocity. However, although both the 

linearized theory and Hunt's full theory predict an increase in the spectrum a t  
high frequencies, the measurements show an appreciable decrease. (See also 
Bearman 1971.) It is probable that this is associated with increased dissipation 
in the intensified turbulence ahead of the plate, since, the greater the intensifica- 
tion a t  low frequencies, the greater the fall in the spectrum at high frequencies. 

Figure 8 shows predicted and measured intensities of the streamwise velocity 
on the centre-line. Measurements and some calculated results have also been 
included for the solid plate (K  = co). It is clear from these results that the 
linearized theory underestimates the degree of distortion occurring ahead of the 
plate, particularly in regions where ['%I is O(1). For this reason, the theoretical 
curve for K = 00 has not been calculated closer to the plate than half a diameter. 
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4.3. Astjmptotic behaviour (two-dimensional plates) 
(i) Low fvequency. As k, -+ 0 with all other parameters fixed, the a/at terms in 

(8) and (9) associated with acceleration become negligible. The resulting equations 
lead to Vickery's formula for the drag, 0, say. In  this case, the calculated increase 
in the admittance comes entirely from distortion of the turbulent velocity field. 

(ii) High frequency. When k, is very large the main contribution to the inte- 
grals in (18) and (19) occurs when k, and k, are correspondingly large. The 
distortion function F,(h) has the asymptotic form on 2, = 0,  for large klh, 

This is independent of h/k and hence of L,. Integrating (19) gives the velocity 
spectrum 

I n  the potential equation for the drag, the a/at terms dominate, leading to  
D = ( I+&K)D, .  
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D, is Vickery's formula for the drag. Combining this with the velocity distortion 
formula above, and using Roberts' (1971) high frequency asymptote for 0, 
with a von K k m h  turbulence spectrum, gives 

A(%)+-  1.86{1+0.559K+ 0.077K2}{a2+4n2n2)-), where a = naI'(+)/(I'(+) Ll ) .  
This asymptote is shown in figure 6. 

(iii) Large length scale turbulence (L,+co). Equation (16) for the spectrum of 
unsteady drag can be rewritten as 

where Li = k, /y  and y = (a2+k;)a.  

If we now let &+a, a+O, and if k, is held fixed $. 0 (i.e. w is fixed), SDD-+O, 

because the frequency parameter k, L, is increasing and therefore we are looking 
at regions of decreasing turbulent energy. But the largest measured admittances 
and distortions occur a t  the low frequency end of the spectrum, where it is 
fairly flat. A more useful limit may therefore be obtained by examining the 
zero-frequency intercept of the admittance in large-scale turbulence. 

P,(lc, = 0) = (2C,sink2)/k2, 
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as in (i); therefore 

xj(k, = 0 )  = 2 ~ , ( 1 +  ( ~ ~ ~ ~ , ~ ~ ( n ) d h ) l L 1 + 0 ( ~ , z ) )  as ~ , - J c o ,  ( 2 0 )  

where a = niI'(g)/I'(g) and A= 4K/(4+K) 

is the mean source-like effect of the plate on the free stream due to the steady 
drag. The O(l/L,) term in (20) represents additional unsteady drag due to dis- 
tortion of the oncoming turbulence. The admittance a t  zero frequency A(0)  is 
obtained by dividing (19) by 64s2L,CgUZ,, and putting y = CT. Integrating Fj(h) 
gives 

This predicts an O(L;l) increase in A(0)  owing to distortion above the zero- 
frequency, infinite length scale value of 1. In  the absence of distortion, Vickery's 
admittance (see Roberts 1971) can be expanded for large length scale as 

A(0)  = 1 + 0.29A&F1 + O(LT2). 

A,(O) = 1 - CL,Z. 

(C is a positive constant.) This second term represents a reduction of the admit- 
tance owing to reduced coherence of the incident turbulence over the face of the 
plate as the characteristic eddy size gets smaller. The first-order distortion term 
is therefore of lower order than the second-order coherence effect, but in practice, 
because the constant C is numerically quite large, the coherence term dominates 
the distortion term at all length scales for which the latter is not negligible. A 
more useful asymptotic approximation for the effect of distortion is therefore 

A(0)  = A,(O){l+ 0.29ALrl). 

Figure 6 shows this to give good agreement with the computed admittances at  
the low frequency end of the spectrum, even down to quite small length scales. 

(iv) Small length scales (L,+ 0). The assumptions of rapid-distortion theory, 
and of the present linearized analysis make application of the theory doubtful 
in this case. Nevertheless, it  is interesting to compare the asymptotic result 
obtained in this limit with the results of other methods. Hunt (1973) and Bearman 
(1971) both showed that, for sufficiently small length scales, the turbulence con- 
vected along the centre-line (stagnation streamline in their cases) undergoes a 
homogeneous plane strain. The velocity spectra at distances greater than O(L,) 
from the body can therefore be calculated from the formulae given by Batchelor 
& Proudman (1954). Figure 9 shows curves of the total streamwise intensity 

u2 = (Ulm +u1)2 

calculated for zero length scale turbulence along the centre-line for various plates. 
The results of 'exact ' homogeneous strain theory, and of the present linearized 
theory, are seen to agree, as should be expected, in regions where the flow 
perturbation is small (e.g. < 10% difference if lU1l < 33%). The distortion 
function F.(h) takes the same asymptotic form in the limit L,+O as it did in 
case (ii) of high frequency. That is, 
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FIGURE 9. Asymptotic calculations of turbulence intensity on the centre-line, for Ll + 0. 
---, linearized theory. - - -, homogeneous plane strain (Batchelor & Proudman 1954). 

The irrotational (blockage) part aq51/8xl of the velocity field is negligible provided 
L,/x, -+ 0. Substituting these into (19) gives the velocity spectrum 

The total streamwise intensity a2 is obtained by integrating (19) spherically 
over all wavenumbers, to give 

u2 = {l+*( 1 - 42,) +%(1- el)”>;Li”loo. 

a2 = (1 + *( 1 - Q,) +%( 1 - @J2+ O( 1 - e1)3}?& 

This may be compared with an expansion of the Batchelor & Proudman formula, 
for a small homogeneous plane strain (see e.g. Townsend 1954), as 

The two formulae agree to first order. The difference in the higher-order terms 
reflects the higher-order terms omitted from the turbulent vorticity transport 
equation in the linearized analysis presented here. In  the extreme case of flow 
up to a stagnation point with . L l + O ,  the linearized theory predicts a limiting 
value of u2 = 2-41u:, compared with the infinite intensity predicted by full 
rapid-distortion theory. Corresponding asymptotes for three-dimensional plates 
involve a smaller distortion; since they are more difficult to obtain, they have not 
been derived. 

4.4. Application to solid plates 
In  view of the large amount of experimental data available for solid square plates, 
it seems worth while to attempt a comparison of predictionsof the present method 
with solid plate data. In  figure 5, computed values for a square isoIated porous 
plate with K = 4 (the largest permissible value) are compared with Robert’s 
(1971) theory based on the Vickery drag formula, and with some measured 
results, from a solid plate obtained by Bearman (1969) and from the present 
experiments. This shows that the correction for turbulence distortion given by 
the present calculation (at the small k1 end of the spectrum) is of the right sense 
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and about half the required magnitude. I n  addition, the correction (see figure 6) 
acts so as to bring all the admittance spectra closer together for different L,, 
an effect which is apparent in the experimental data. The asymptotic distortion 
analysis of (iii) for small k, and large L,, is only applicable to two-dimensional 
solid plates. With this, 

where a = nsI'(#)/I'($), Arepresents the total source effect due to the drag of the 
plate, and CD in (21) should be given the experimentally determined value of 
mean drag coefficient for the plate. Thus, CD N 1.85. The total source effect A 
could be related to the drag of the body, A= C,. But, in the case of high 
Reynolds number separated flows, it is more realistic to relate it to the width of 
the near wake. For a flat two-dimensional plate, the near-wake flow model of 
Parkinson & Jandali (1970) gives A= 4.36 for a base pressure coefficient 
C,, = - 1.08. This is rather more than twice that given by d = C,. The 
limiting case of Taylor's theory with K = co gives a similar value d = 4. But 
the simplest general formula for bluff bodies is obtained from Maskell's (1963) 
wind tunnel blockage analysis, from which d = - 2cD/c,b 21 3.44. 

This last formula has been used to calculate the asymptotic admittance value 
given by $4.3 for small k, and L,1. The resulting value for a solid two-dimensional 
plate is shown in figure 5. Also included in this figure is the similar asymptotic 
result for K = 20 using the Taylor source value 4K/(4 + K ) .  By integrating Pj(h) 
in (21) as before, for a von K&rmitn spectrum, the admittance for low frequency 
components of the drag of a solid plate is 

A(n) = A,(%) (1 - 0'58C~/c,bL,~ + o(Li2)}. 
The relative success of this formula at moderate turbulence scales may be ex- 
plained by the fact that much of the incident turbulent vorticity effecting the 
drag misses the region of intense strain close to the stagnation streamline. For 
this reason a similar analysis for the distorted velocity spectrum on the centre- 
line would be less likely to be accurate. An admittance has similarly been cal- 
culated for the square solid plate and is shown in figure 5, in order to compare it 
with the experimental data. 

The extension of Taylor's theory to K = 00 does give tolerable agreement 
with solid plate data and with more accurate flow models (see figure 3), if the 
front face pressures are calculated from Bernoulli's theorem rather than from 
the resistance formula. But the extension of any such methods to unsteady flow 
is very difficult and there is also insufficient detailed experimental evidence to 
construct a model. In  addition all such theories are really limited to predictions 
of front face pressures. Vickery's formula effectively rests on the assumptions 
that for a solid flat plate both the front face and the base pressures depend on 
some integrated value of the turbulent velocities in the neighbourhood of the 
pltbte and its near wake. Vickery chooses the unweighted integral of the normal 
velocities over the front face of the plate as the simplest representation of this 
integral, and this is probably a reasonable assumption in the quasi-steady case. 
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Appendix A. The solution of the equations for the potential 
We define the complete Fourier transforms 

and the purtial transforms 

with @- correspondingly defined such that @ = @++ a_. Thus e.g. @+ is the 
transform of a function which is only non-zero for [xzl < 1. Substitution of 
these transforms into V2q5i = 0, with the condition that the appropriate q5i is 
bounded in each half-space on either side of x1 = 0 implies that the transform 
of aq5,/ax1 is 7Q1 and of @,/axl is - 7@,, where T = (p2 + v2)*, the positive root 
being taken. The transforms of (9) and (10) are 

%(@I- @ 2 )  +p7(@1+ @,) = - 8KP(u+ + (7@1)+), 

and i k 1 T ( @ i +  @2) +PT2(@1- @2) = 0. 

U+ is the appropriate partial transform of 21;. Eliminating Q2 gives 

2(ikl+p7)  @1 = -QKP(u++ (7@1)+), (A 1) 
This type of problem can be solved by either an approximate application of the 
Wiener-Hopf technique or by use of Mellin transforms. However, the following 
alternative approach is convenient here. We write 

-4( ik ,+P7)  @1 = P = P+, 
by the right-hand side of (A 1). P is actually the transform of Ap, the non- 
dimensional load distribution on the plate. Since P = P+ and is proportional to 
U;, this transform can be expressed as a Neumann series 

-m 

p = ( 2 / 4 F 1  x A,Jn+l(P) u;, 
n=O 

where J, is a Bessel function. (See e.g. Titchmarsh 1937, equation 11.22.) 
Substituting this into (A I )  gives, after some rearrangement, 

which completely specifies the problem. If (A 2) is multiplied by a set of + 
transforms 0,+(p) say, and then integrated with respect t o p  between + and - 00 

the (~0~)- term drops out, since 0, is zero wherever aq51/axl is non-zero. 

0, = ,~-lJ;+~(p), m 2 0. 

A suitable set of functions for 0, is 

Using these, and the result that 
00 
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the set of linear equations obtained can be truncated by assuming Pn negligible 
for n 2 N ,  and solved as separated sets of even and odd equations: 

The summation is over odd values when m is odd, and even when m is even. 
The coefficients An correspond to weighted moments of the load distribution Ap. 
Thus e.g. 

m 1  

n=O -1 
Pzm = ( - (4m + 2) C' 1 TZ,(Z~) ApdxJUT. 

T, is a Chebyshev polynomial. I n  particular, the sectional drag of the plate is 

D = Po V; exp [i(wt - k,x,)]. 

Similarly the velocity component a#l/axl on the centre-line upstream of the pIate 
is given by 

The non-tabulated parts of the integrals in (A 3) were integrated numerically. 

Appendix B. Calculation of U' from the distorted turbulent vorticity 
field 

The Biot-Savart contribution to (2) can be written, in an abbreviatednotation, 

u; = ui, + Sfii(gip(x, 6)) Z,, exp [i(wt - kaz3)]. 

dpij is a linear matrix operator (the Biot-Savart integral); and g j p  is a linear 
function of the mean disturbance velocity. This linearity, which followed from 
the smallness of 161 in the main regions of contribution to 9, is essential to 
the following analysis. 

Suppose 
g j p  = g&, 6, Y), 

when ii is the mean disturbance velocity of a unit density line source placed a t  
(zl = 0, z2 = y) in the stream. Then, in the case of the porous plate, 

where 

is the source distribution representing the plate. Therefore, taking the negative 
Fourier transform M (  - A )  of m(y), where 

4K sinh 
4 + K  rrh' M ( - A )  = -- 

gives u'. z = u im + {jam ~ S f i 3 ( G l p ( A ) )  d h )  Z,, exp [ i (wt  - k3z3)] .  (B 1) 
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G(A) is the transform of g(y). The order of integration is assumed to be inter- 
changeable, and the identity 

J --OD J - W  

has been used. The reason for this manoeuvre is that Ziij(G) can be integrated 

analytically, whereas Sij mg(y) dy (i.e. direct evaluation from the velocity 
( S I m  I 

field of the plate) apparently cannot. 
Therefore, since 

Cw = - ik x U exp [i(wt - k. x)], 

ui = Uj, exp [i(wt - k3z3)]  exp [ - i(klxl + k2x2)] 8ij +- 

E' can be expressed as an algebraic expression in h and k by carrying out the 
Biot-Savart integration ,Epij on the Fourier components G,(h) of the mean 
disturbance velocity: 

x exp [Axl - i ( k l z ,  + k2x2)]  

where 

k 2 = k i + k i + k i ,  a n = k 2 - ( - l ) m h ,  /3,= (a:+k$)* and y n = P n + i k l .  

The final integration with respect to h in (B 2 )  was carried out numerically. 
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